47 research outputs found

    Inverse problem and Bertrand's theorem

    Full text link
    The Bertrand's theorem can be formulated as the solution of an inverse problem for a classical unidimensional motion. We show that the solutions of these problems, if restricted to a given class, can be obtained by solving a numerical equation. This permit a particulary compact and elegant proof of Bertrand's theorem.Comment: 11 pages, 3 figure

    Discrete complex analysis on planar quad-graphs

    Get PDF
    We develop a linear theory of discrete complex analysis on general quad-graphs, continuing and extending previous work of Duffin, Mercat, Kenyon, Chelkak and Smirnov on discrete complex analysis on rhombic quad-graphs. Our approach based on the medial graph yields more instructive proofs of discrete analogs of several classical theorems and even new results. We provide discrete counterparts of fundamental concepts in complex analysis such as holomorphic functions, derivatives, the Laplacian, and exterior calculus. Also, we discuss discrete versions of important basic theorems such as Green's identities and Cauchy's integral formulae. For the first time, we discretize Green's first identity and Cauchy's integral formula for the derivative of a holomorphic function. In this paper, we focus on planar quad-graphs, but we would like to mention that many notions and theorems can be adapted to discrete Riemann surfaces in a straightforward way. In the case of planar parallelogram-graphs with bounded interior angles and bounded ratio of side lengths, we construct a discrete Green's function and discrete Cauchy's kernels with asymptotics comparable to the smooth case. Further restricting to the integer lattice of a two-dimensional skew coordinate system yields appropriate discrete Cauchy's integral formulae for higher order derivatives.Comment: 49 pages, 8 figure

    Approximation of conformal mappings using conformally equivalent triangular lattices

    Get PDF
    Consider discrete conformal maps defined on the basis of two conformally equivalent triangle meshes, that is edge lengths are related by scale factors associated to the vertices. Given a smooth conformal map ff, we show that it can be approximated by such discrete conformal maps fϵf^\epsilon. In particular, let TT be an infinite regular triangulation of the plane with congruent triangles and only acute angles (i.e.\ <π/2<\pi/2). We scale this tiling by ϵ>0\epsilon>0 and approximate a compact subset of the domain of ff with a portion of it. For ϵ\epsilon small enough we prove that there exists a conformally equivalent triangle mesh whose scale factors are given by logf\log|f'| on the boundary. Furthermore we show that the corresponding discrete conformal maps fϵf^\epsilon converge to ff uniformly in C1C^1 with error of order ϵ\epsilon.Comment: 14 pages, 3 figures; v2 typos corrected, revised introduction, some proofs extende

    Initial Data for General Relativity with Toroidal Conformal Symmetry

    Get PDF
    A new class of time-symmetric solutions to the initial value constraints of vacuum General Relativity is introduced. These data are globally regular, asymptotically flat (with possibly several asymptotic ends) and in general have no isometries, but a U(1)×U(1)U(1)\times U(1) group of conformal isometries. After decomposing the Lichnerowicz conformal factor in a double Fourier series on the group orbits, the solutions are given in terms of a countable family of uncoupled ODEs on the orbit space.Comment: REVTEX, 9 pages, ESI Preprint 12

    A Renormalization Group Approach to Relativistic Cosmology

    Full text link
    We discuss the averaging hypothesis tacitly assumed in standard cosmology. Our approach is implemented in a "3+1" formalism and invokes the coarse graining arguments, provided and supported by the real-space Renormalization Group (RG) methods. Block variables are introduced and the recursion relations written down explicitly enabling us to characterize the corresponding RG flow. To leading order, the RG flow is provided by the Ricci-Hamilton equations studied in connection with the geometry of three-manifolds. The properties of the Ricci-Hamilton flow make it possible to study a critical behaviour of cosmological models. This criticality is discussed and it is argued that it may be related to the formation of sheet-like structures in the universe. We provide an explicit expression for the renormalized Hubble constant and for the scale dependence of the matter distribution. It is shown that the Hubble constant is affected by non-trivial scale dependent shear terms, while the spatial anisotropy of the metric influences significantly the scale-dependence of the matter distribution.Comment: 57 pages, LaTeX, 15 pictures available on request from the Author

    About curvature, conformal metrics and warped products

    Get PDF
    We consider the curvature of a family of warped products of two pseduo-Riemannian manifolds (B,gB)(B,g_B) and (F,gF)(F,g_F) furnished with metrics of the form c2gBw2gFc^{2}g_B \oplus w^2 g_F and, in particular, of the type w2μgBw2gFw^{2 \mu}g_B \oplus w^2 g_F, where c,w ⁣:B(0,)c, w \colon B \to (0,\infty) are smooth functions and μ\mu is a real parameter. We obtain suitable expressions for the Ricci tensor and scalar curvature of such products that allow us to establish results about the existence of Einstein or constant scalar curvature structures in these categories. If (B,gB)(B,g_B) is Riemannian, the latter question involves nonlinear elliptic partial differential equations with concave-convex nonlinearities and singular partial differential equations of the Lichnerowicz-York type among others.Comment: 32 pages, 3 figure

    Discrete conformal maps: boundary value problems, circle domains, Fuchsian and Schottky uniformization

    Get PDF
    We discuss several extensions and applications of the theory of discretely conformally equivalent triangle meshes (two meshes are considered conformally equivalent if corresponding edge lengths are related by scale factors attached to the vertices). We extend the fundamental definitions and variational principles from triangulations to polyhedral surfaces with cyclic faces. The case of quadrilateral meshes is equivalent to the cross ratio system, which provides a link to the theory of integrable systems. The extension to cyclic polygons also brings discrete conformal maps to circle domains within the scope of the theory. We provide results of numerical experiments suggesting that discrete conformal maps converge to smooth conformal maps, with convergence rates depending on the mesh quality. We consider the Fuchsian uniformization of Riemann surfaces represented in different forms: as immersed surfaces in \mathbb {R}^{3}, as hyperelliptic curves, and as \mathbb {CP}^{1} modulo a classical Schottky group, i.e., we convert Schottky to Fuchsian uniformization. Extended examples also demonstrate a geometric characterization of hyperelliptic surfaces due to Schmutz Schaller

    APPLICATION OF HILBERT SPACE METHODS TO LIE GROUPS ACTING ON A DIFFERENTIABLE MANIFOLD

    No full text
    corecore